Math, asked by ne5luCh3oslabaksh, 1 year ago

Cos(π/7).cos(2π/7).cos(4π/7)

Answers

Answered by Neha729
107
seeeeee thissss picccc.....
Attachments:
Answered by babundrachoubay123
21

Answer:

\frac{-1}{8}

Step-by-step explanation:

According to this question

Given that

cos(\frac{\pi}{7})\times cos(\frac{2\pi}{7})\times cos(\frac{4\pi}{7})

Formula, sin 2x = 2 sinx cosx

cosx = \frac{sin 2x}{2sin x}

So,

cos(\frac{\pi}{7})\times cos(\frac{2\pi}{7})\times cos(\frac{4\pi}{7}) = \frac{sin \frac{2\pi}{7}\times sin \frac{4\pi}{7}\times sin \frac{8\pi}{7}\times }{2sin \frac{\pi}{7}\times 2sin \frac{2\pi}{7}\times 2sin \frac{4\pi}{7}}

cos(\frac{\pi}{7})\times cos(\frac{2\pi}{7})\times cos(\frac{4\pi}{7}) = \frac{sin(\pi -\frac{\pi}{8})}{8sin \frac{\pi}{7}}

cos(\frac{\pi}{7})\times cos(\frac{2\pi}{7})\times cos(\frac{4\pi}{7}) = \frac{sin(-\frac{\pi}{7})}{8sin \frac{\pi}{7}}

cos(\frac{\pi}{7})\times cos(\frac{2\pi}{7})\times cos(\frac{4\pi}{7}) = \frac{-1}{8}

Similar questions