Cos 70/sin 20 + cos 59/sin 31 - 8sin2^30
Answers
Answered by
52
Answer:
(cos70°/sin20°) + (cos59°/sin31°) - 8 sin230°
Concept
Using
cos(90° - θ) = sinθ
sin(90° - θ) = cosθ
sin30° = (1/2)
Calculation
cos70° = cos(90° - 20°)
⇒ cos70° = sin20° and
⇒ cos59° = cos(90° - 31°)
⇒ cos59° = sin31°
Now, substitute the values in equation
⇒ (sin20°/sin20°) + (sin31°/sin31°) - 8sin230°
⇒ 1 + 1 - (8 × (1/2)2)
⇒ 2 - (8 × (1/4))
⇒ 2 - 2 = 0
∴ (cos70°/sin20°) + (cos59°/sin31°) - 8 sin230° = 0
Answered by
53
Sin(90°-α) = cosα
cos(90°-α) = sinα
So,
=cos70°/sin20°+cos59°/sin31°-8sin²30°
=[cos(90°-20)/sin20°+[cos(90°-31°)]/sin31°-8×(1/2)²
= sin20°/sin20°+sin31°/sin31°-2
= 1+1-2
= 0
[tex][/tex]
Similar questions