Math, asked by chandu7087, 4 months ago

(cos 7A + cos 5A)÷(sin 7A + sin 5A)=cot 6A.​

Answers

Answered by Anonymous
49

 \maltese \:  \:  \:  \:  \textbf{\underline{\underline{Solution \:  : }}}

 \sf \longrightarrow \: \frac{ \cos(7A)  +  \cos(5A) }{ \sin(7A)  +  \sin(5A) } \\

 \sf \longrightarrow \:  \frac{ 2 \cos( \frac{7A + 5A}{2})  \cos( \frac{7A - 5A}{2}) }{2 \sin( \frac{7A + 5A}{2}) \cos( \frac{7A - 5A}{2} )  }  \\

 \sf \longrightarrow \:  \frac{  \cancel{2 } \: \cos( \frac{7A + 5A}{2})  \:   \cancel{\cos( \frac{7A - 5A}{2})} }{ \cancel{2}  \: \sin( \frac{7A + 5A}{2})  \:  \cancel{\cos( \frac{7A - 5A}{2} )  }}  \\

  \longrightarrow \:  { \underline{\boxed{ \bf{\cot(6A) }}  \:  \: }}_{ \bigstar \star} \:  \:  \:  \:  \:  \:  \:  \:  \bf{[Proved]}

 \maltese \:  \:  \:  \:  \textbf{\underline{\underline{Required \:  Concept \:  : }}}

 { \large{\odot }}\:  \:  \:  \bf \:  \sin C +  \sin D = 2 \sin \frac{C +  D}{2}  \cos \frac{C - D}{2}

{ \large{ \odot }}\:  \:  \:  \bf \:  \cos C  +  \cos D = 2 \cos \frac{C  + D}{2}  \cos \frac{C -  D}{2}

Similar questions
Math, 4 months ago