Math, asked by vighnesh1164, 3 months ago

cos 7A +Cos 5A/sin7A -sin5A=​

Answers

Answered by mathdude500
2

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

\boxed{{\bf \: sinx - siny = 2cos\bigg( \dfrac{x + y}{2} \bigg)sin\bigg( \dfrac{x - y}{2} \bigg)}}

\boxed{{\bf \: cosx + cosy = 2cos\bigg( \dfrac{x + y}{2} \bigg)cos\bigg( \dfrac{x - y}{2} \bigg)}}

\large\underline{\bf{Solution-}}

\rm :\longmapsto\:\dfrac{cos7A + cos5A}{sin7A - sin5A}

 \sf \:  \:  \:  \:  =  \:  \: \dfrac{ \cancel2cos\bigg( \dfrac{7A + 5A}{2} \bigg)cos\bigg( \dfrac{7A - 5A}{2} \bigg)}{ \cancel2cos\bigg( \dfrac{7A + 5A}{2} \bigg)sin\bigg( \dfrac{7A - 5A}{2} \bigg)}

 \sf \:  \:  \:  \:  =  \:  \: \dfrac{ \cancel{cos6A} \: cosA}{ \cancel{cos6A} \: sinA}

 \sf \:  \:  \:  \:  =  \:  \: cotA

Additional Information :-

\boxed{{\bf \: sinx  + siny = 2sin\bigg( \dfrac{x + y}{2} \bigg)cos\bigg( \dfrac{x - y}{2} \bigg)}}

\boxed{{\bf \: cosx - cosy = 2sin\bigg( \dfrac{x + y}{2} \bigg)sin\bigg( \dfrac{y - x}{2} \bigg)}}

\boxed{{\bf \: 2sinxcosy = sin(x + y) + sin(x - y)}}

\boxed{{\bf \: 2cosxcosy = cos(x + y) + cos(x - y)}}

\boxed{{\bf \:  2sinxsiny = cos(x - y) - cos(x + y)}}

Similar questions