Math, asked by anurag1272, 1 month ago

cos 7A=sin(A-6) then value of A

Answers

Answered by ZaraAntisera
0

Answer:

\cos \left(7A\right)=\sin \left(A-6\right)\quad :\quad \begin{bmatrix}\mathrm{Radians:}\:&\:A=\frac{12+4\pi n+\pi }{16},\:A=-\frac{\pi +4\pi n+12}{12}\:\\ \:\mathrm{Degrees:}&\:A=54.22183^{\circ \:}+45^{\circ \:}n,\:A=-72.29577^{\circ \:}-60^{\circ \:}n\end{bmatrix}

Step-by-step explanation:

\cos \left(7A\right)=\sin \left(A-6\right)

\cos \left(7A\right)=\sin \left(\frac{\pi }{2}-7A\right)

A-6=\frac{\pi }{2}-7A+2\pi n,\:A-6=\pi -\left(\frac{\pi }{2}-7A\right)+2\pi n

A=\frac{12+4\pi n+\pi }{16},\:A=-\frac{\pi +4\pi n+12}{12}

Similar questions