Math, asked by kswasthi284, 7 months ago

cos 7x + cos 5x by sin 7x -sin5x = cot x​

Answers

Answered by Anonymous
126

Given:

 \sf  \Rsh \dfrac{\cos 7x+\cos 5x}{ \sin 7x -  \sin 5x }  =  \cot x

To Prove:

 \sf  \Rsh L.H.S = R.H.S

Proof:

L.H.S

 \sf  \to \dfrac{\cos 7x+\cos 5x}{ \sin 7x -  \sin 5x} \: solve \: numerto \: and \: denominator \: seperately

Take numerator

 \sf  \to \cos 7x+\cos 5x \qquad[ \cos x +  \cos y = 2 \cos \frac{x + y}{2}\cos \frac{x - y}{2} ]

Putting x = 7x and y = 5x

 \sf   :\implies  2 \cos \frac{x + y}{2}\cos \frac{x - y}{2}

 \sf   :\implies 2 \cos( \frac{7x + 5x}{2})\cos (\frac{7x - 5x}{2})

 \sf   :\implies 2 \cos( \frac{12x}{2})\cos (\frac{2x}{2})

 \sf   :\implies 2 \cos(6x)\cos (x)

 \sf   :\implies 2 \cos 6x\cos x.....(1)

________________

 \sf  Now, it's  \: time \:  to  \: take  \: denomiator

 \sf  \to \sin 7x -  \sin 5x

 \sf  [ \sin x  -  \sin y = 2 \cos \frac{x + y}{2}\sin \frac{x - y}{2} ]

Putting x = 7x and y = 5x

 \sf  :\implies2 \cos \frac{x + y}{2}\sin \frac{x - y}{2}

 \sf  :\implies2 \cos( \frac{7x + 5x}{2})\sin (\frac{7x - 5x}{2} )

 \sf   :\implies 2 \cos( \frac{12x}{2})\sin (\frac{2x}{2})

 \sf   :\implies 2 \cos(6x)\sin (x)

 \sf   :\implies 2 \cos 6x\sin x.....(2)

______________

Now, divide equation 1) and 2) we get

 \sf  \to \dfrac{\cos 7x+\cos 5x}{ \sin 7x -  \sin 5x}

 \sf   \to \dfrac{2 \cos 6x\cos x}{2 \cos 6x\sin x}

 \sf   \to \dfrac{ \cancel{2\cos 6x}\cos x}{\cancel{2 \cos 6x}\sin x}

 \sf   \to \dfrac{\cos x}{sin x}

 \sf   \to \cot x = R.H.S

Hence, Proved

 \sf  \Longrightarrow  \dfrac{\cos 7x+\cos 5x}{ \sin 7x -  \sin 5x }  =  \cot x

Similar questions