Math, asked by pranavi00, 7 months ago

Cos 8A. COS 5A-COS 12A COS9A/
Sin 8A COSSA + Cos 12A . Sin 9A​

Answers

Answered by Arinjay6127
0

Answer:

(iii) (p^2 - q^2r)^2+ 2p^2q^2r

Step-by-step explanation:

(iii) (p^2 - q^2r)^2+ 2p^2q^2r

(iii) (p^2 - q^2r)^2+ 2p^2q^2r

(iii) (p^2 - q^2r)^2+ 2p^2q^2r

(iii) (p^2 - q^2r)^2+ 2p^2q^2r

Answered by janwanigreat
4

Answer:

2cos8A cos5A-2cos12A cos9A/2sin 8A cos 5A+cos 12Asin 9A

= Cos 13A+Cos 3A-cos21A-cos3A/ Sin13A+sin3A+Sin 21A-sin 3A

​= Cos13A-cos21A/Sin13A+sin 21A

​= 2sin12Asin4A/2sin12Acos4A

= Tan 4A

Step-by-step explanation:

Given, (cos 8A * cos 5A - cos 12A * cos 9A)/(sin 8A * cos 5A + cos 12A * sin 9A)

= {2(cos 8A * cos 5A - cos 12A * cos9A)/2}/{2(sin 8A * cos 5A + cos 12A * sin 9A)/2}                    {Multiply and divide by 2}

= [{cos 13A + cos 3A}/2 - {cos 21A + cos 3A}/2]/[{sin 13A + sin 3A}/2 + {sin 21A - sin 3A}/2]     {Apply product into sum or difference formula of

                                                                                                                                                     trigonometric ratios}

= (cos 13A - cos 21A)/(sin 13A + sin 21A)                                                    

= (2*sin 17A * sin 4A)/(2*sin 17A * cos4A)                        {Apply sum and difference into product formula of trigonometric ratios}

= sin 4A/cos 4A

= tan 4A

So, (cos 8A * cos 5A - cos 12A * cos 9A)/(sin 8A * cos 5A + cos 12A * sin 9A) = tan 4A

Similar questions