Math, asked by adhikaribeezya, 9 months ago

cos^8a-sin^8a=1/8cos2a(3+cos4a)​

Answers

Answered by shubham8162
1

Answer:

cos 9 answer of this question

Answered by defendersohamkhdk
3

Question: cos^8a-sin^8a=1/4 cos2a(3+cos4a)​

Answer: LHS= (cos^4A)^2 - (sin^4A)^2

=(cos^4A+sin^4A) (cos^4A-sin^4A)

=[(cos^2A)^2 + (sin^2A) ] [(cos^2A)^2 - (sin^2A)]

=[(cos^2A +sin^2A)^2 - 2cos^2Asin^2A] [(cos^2A-sin^2A) (cos^2A +sin^2A)]

=[1 - 2 cos^2A sin^2A] cos2A

=1/4 x 4 [1 - 2 cos^2A sin^2A] cos2A

=1/4 [4 - 2.(2 cosA sinA)^2]cos2A

=1/4 [4-2sin^2 2A] cos2A

=1/4 [4-2(1-cos^2 A)]cos2A

=1/4 [4-2+2cos^2 A]cos2A

= 1/4 [2+2cos^2 2A]cos2A

=1/4 [2+(cos4A +1)]cos2A

=1/4 [2+1+ cos 4A]cos2A

=1/4[3+cos4A]cos2A

=1/4 cos2A [3+cos4A]

=RHS

Hence, RHS =LHS

Similar questions