Cos^8a+sin^8a=1-sin^22a+1/8sin^42a
Answers
Answered by
0
Use x=cos2Ax=cos2A and y=sin2Ay=sin2A in
(x+y)4=(x4+y4)+4xy(x2+y2)+6x2y2=(x4+y4)+4xy((x+y)2–2xy)+6x2y2=(x4+y4)+4xy(x+y)2−2x2y2(x+y)4=(x4+y4)+4xy(x2+y2)+6x2y2=(x4+y4)+4xy((x+y)2–2xy)+6x2y2=(x4+y4)+4xy(x+y)2−2x2y2
to get
1=(cos8A+sin8A)+4cos2Asin2A−2cos4Asin4A1=(cos8A+sin8A)+4cos2Asin2A−2cos4Asin4A
=(cos8A+sin8A)+(2cosAsinA)2−18(2cosAsinA)4=(cos8A+sin8A)+(2cosAsinA)2−18(2cosAsinA)4
=(cos8A+sin8A)+sin2(2A)−18sin4(2A)=(cos8A+sin8A)+sin2(2A)−18sin4(2A)
(x+y)4=(x4+y4)+4xy(x2+y2)+6x2y2=(x4+y4)+4xy((x+y)2–2xy)+6x2y2=(x4+y4)+4xy(x+y)2−2x2y2(x+y)4=(x4+y4)+4xy(x2+y2)+6x2y2=(x4+y4)+4xy((x+y)2–2xy)+6x2y2=(x4+y4)+4xy(x+y)2−2x2y2
to get
1=(cos8A+sin8A)+4cos2Asin2A−2cos4Asin4A1=(cos8A+sin8A)+4cos2Asin2A−2cos4Asin4A
=(cos8A+sin8A)+(2cosAsinA)2−18(2cosAsinA)4=(cos8A+sin8A)+(2cosAsinA)2−18(2cosAsinA)4
=(cos8A+sin8A)+sin2(2A)−18sin4(2A)=(cos8A+sin8A)+sin2(2A)−18sin4(2A)
Similar questions