cos(90+theeta)sec(-theeta)tan(180-theeta)/ sec(360-theeta)sin(180+theeta)cot(90-theeta)
(◕ᴗ◕✿)(◔‿◔)
I need the answer of this question..
Answers
Answered by
0
Answer:
\frac{cos(90+ \alpha ).sec(- \alpha ).tan(180- \alpha )}{sec(360- \alpha ).sin(180+ \alpha ).cot(90- \alpha )}
sec(360−α).sin(180+α).cot(90−α)
cos(90+α).sec(−α).tan(180−α)
\frac{-sin \alpha .sec \alpha .-tan \alpha }{sec \alpha .-sin \alpha .tan \alpha }
secα.−sinα.tanα
−sinα.secα.−tanα
\frac{-sin \alpha. sec \alpha .tan \alpha }{sin \alpha. sec \alpha .tan \alpha }
sinα.secα.tanα
−sinα.secα.tanα
-1
Answered by
0
Answer:
we know that.
cos(90°+◑)=(-sin◑)
sec(-◑) = sec◑
tan (180°-◑) = (-tan◑)
sec (360°-◑) = (sec◑)
sin (180°+◑) = (-sin◑)
cot (90°-◑) = tan◑
= (-sin◑) (sec◑) (-tan◑) /(sec◑) (-sin◑) (-tan◑)
= 1
Similar questions