Cos (90-theta)/1+sin(90-theta)+1+sin(90-theta)/cos(90-theta)=2csc theta
Answers
Answered by
14
To prove :
(Cos (90-Φ)/[1+sin(90-Φ)])+([1+sin(90-Φ)]/cos(90-Φ))=2cosecΦ
proof :
here first remember that ,
cos ( 90 - Φ ) = sin Φ
sin ( 90 - Φ ) = cos Φ
Therefor,
LHS = (Cos (90-Φ)/[1+sin(90-Φ)])+([1+sin(90-Φ)]/cos(90-Φ))
= (sin Φ/(1+cosΦ))+(1+cosΦ)/sinΦ)
=(sin^2Φ + ( 1+cosΦ)^2)/((1+cosΦ)sinΦ)
=(sin^2Φ+1+2cosΦ+cos^2Φ)
/((1 + cosΦ) sinΦ)
=(( sin^2Φ + cos^2Φ) + 1 + 2cosΦ)
/ ((1 + cosΦ ) sinΦ )
=( 1 + 1 + 2cosΦ ) / ((1+cosΦ)sinΦ)
=( 2 + 2 cosΦ ) / ((1+cosΦ)sinΦ)
=((2(1+cosΦ))/((1+cosΦ)sinΦ)
= 2 / sinΦ
=2cosecΦ = RHS
hence proved
Similar questions