Math, asked by OAVStudentAce, 7 months ago

Cos A= 1/4, then the value of 2secA/(1+tan²A) is​

Answers

Answered by ItzVash003
1

Answer: → 1

Step-by-step explanation:

cos A = 1/2 ---( 1 )

************************

We know that ,

1 ) 1 + tan² A = sec² A

2 ) 1/secA = cos A

*******************************

Value of 2secA/( 1 + tan² A )

= 2secA/ sec² A

= 2/secA

= 2cosA

= 2 × 1/2

= 1

Answered by kaushik05
5

Given :

 \star \: \cos \: A =  \frac{1}{4}

To find :

• The value of :

 \star \:  \frac{2 \sec \: A}{1 +  { \tan}^{2} A}  \\

Solution :

• As we know that :

 \star \boxed{  \bold{\cos \: A =  \frac{1}{ \sec \: A} }} \\  \\  \boxed{ \bold{ \star \:  { \sec}^{2}A =  1 +  { \tan}^{2} A}} \\

we get :

 \implies \:  \sec \: A = 4

Now ,

 \implies \frac{2 \sec \: A}{1 +  { \tan}^{2}A }  \\  \\  \implies \:  \frac{2 \sec \: A}{ { \sec}^{2} A}  \\  \\  \implies \:  \frac{2}{ \sec A }  \\  \\  \implies \:  \frac{2}{4}  \\  \\  \implies \:  \frac{1}{2}

Hence , the value is 1/2 .

Formulas :

 \star   \sin \alpha  =  \frac{1}{ \csc( \alpha ) }  \\  \\  \star \:  \cos( \alpha ) =  \frac{1}{ \sec( \alpha ) }  \\  \\  \star \:  \tan( \alpha )  =  \frac{1}{  \cot \alpha }

Similar questions