Math, asked by yaduvanshiv5521, 1 year ago

Cos a=1/7 , cos b=13/14 a,b acute angle show that a-b =60

Answers

Answered by BEJOICE
77

 \cos a =  \frac{1}{7}  \\  \sin a =   \sqrt{1 -  {( \frac{1}{7}) }^{2} }  =  \frac{4 \sqrt{3} }{7}  \\  \cos b =  \frac{13}{14}  \\  \sin b =   \sqrt{1 -  {( \frac{13}{14}) }^{2} }  =  \frac{3\sqrt{3} }{14}  \\  \\ \cos (a - b) = \cos a\cos b + \sin a\sin b  \\  =  \frac{1}{7}  \times  \frac{13}{14}  +  \frac{4 \sqrt{3} }{7}  \times  \frac{3 \sqrt{3} }{14}  \\  =  \frac{49}{7 \times 14}  =  \frac{1}{2}  \\ so \:  \: a - b = 60 \: degree
Similar questions