Math, asked by Anonymous, 7 months ago

cos a /1+sin a + 1 +sin a/cos a =2 sec a​

Answers

Answered by Anonymous
4

Answer:

LHS =

=  \sf{\dfrac{ cos \sf{a}}{1 + sin \sf{a}}    +  \:  \dfrac{ 1 + sin \sf{a} }{ cos \sf{a} }  }

=  \sf{\dfrac{ cos \sf{a} \:  \times cos \sf{a}   +(1 + sin \sf{a}) \times (1sin \sf{a}) }{ (1 + sin \sf{a})cos \sf{a} } }

=  \sf{\dfrac{  {cos}^{2} \sf{a} + (1 + sin \sf{a} {)}^{2} }{ (1 + sin \sf{a}) \times cos \sf{a} } }

= \sf{ \dfrac{ {cos}^{2} \sf{a} +  ({1}^{2} +  {sin}^{2} \sf{a} + 2 \times 1 \times sin \sf{a})}{ cos \sf{a} \times (1 + sin \sf{a}) } }

=  \sf{\dfrac{( {sin}^{2}\sf{a} +  {cos}^{2}) + (1 + 2sin \sf{a})}{ cos \sf{a} \times (1 + sin \sf{a})} }

=   \sf{\dfrac{1 + 1 + 2 \: sin \sf{a} }{cos \times (1 + sin \sf{a}) } }

=  \sf{\dfrac{2 + 2sin \sf{a}}{cos \sf{a} \times (1 + sin \sf{a})}  =  \dfrac{2 \times (1 + sin \sf{a})}{cos \sf{a} \times (1 + sin \sf{a})} }

={\sf{\dfrac{2 \times  \cancel{(1+sina)}}{cosa \times \cancel{(1+sina)} }}}

= \sf{ 2 \times \dfrac{1}{cosa} }

= \sf{2 \times sec \sf{a}}

= \bf{2sec \sf{a}  } \:  \:  \sf{R.H.S}

                     

★★★


Brâiñlynêha: Awesome
Similar questions