Math, asked by churbishan, 1 year ago

cos A/(1+sin A)+(1+sin A)/cos A = 2 sec A

Answers

Answered by shivamcr7ii
8

Answer:


Step-by-step explanation:


Attachments:

ceus21: appreciate bro
Answered by Anonymous
3

\ {\bold\purple{\dfrac{Cos \ A}{1 + Sin \ A} + \dfrac{1 + Sin \ A}{Cos \ A} = 2 \ sec \ A}}

\: \: \: \: \: \: \: \: \: \: \: \:

\begin{gathered}\implies\sf \dfrac{Cos \ A}{ 1 + Sin \ A} + \dfrac{1 + Sin \ A}{Cos \ A} \\\\\\:\implies\sf\dfrac{ Cos^2 A + \Bigg[1 + Sin \ A \Bigg]^2}{\Bigg[1 + Sin \ A \Bigg] Cos \ A} \\\\\\:\implies\sf \dfrac{ Cos^2 \ A + 1 \ Sin^2 \ A + 2 \ Sin \ A}{\Big[1 + Sin \ A \Big] + Cos \ A}\\\\\\:\implies\sf \dfrac{ 2 + 2 \ Sin \ A}{Cos \ A \Big[ 1 + Sin \ A \Big]}\\\\\\:\implies\sf \dfrac{ 2}{Cos \ A} \\\\\\:\implies{\bold\purple{ 2 \ Sec \ A}}\end{gathered}

\qquad\qquad{\bold\pink{Hence \ Proved!!}}

Similar questions