Math, asked by harshikarao15, 6 months ago

(cos A/1+sin A )+(1+sin A/cosA)​

Answers

Answered by QueenIsBusy
34

Answer:

\huge\rm{\underline{\underline{Given\rightarrow}}}

  • \mathrm\green{\dfrac{(CosA)}{(1+SinA)}+\dfrac{(1+SinA)}{(CosA)}}

\huge\rm{\underline{\underline{To\:Perform\rightarrow}}}

\mathrm\purple{\rightarrow{Simplification\:of\:the\:equation.}}

\huge\rm{\underline{\underline{Answer\rightarrow}}}

\mathrm\blue{\rightarrow{\dfrac{(CosA)}{(1+SinA)}+\dfrac{(1+SinA)}{(CosA)}}}

\mathrm\blue{\rightarrow{\dfrac{(CosA.CosA)}{(1+SinA.CosA)}+\dfrac{(1+SinA.1+SinA)}{(CosA.1+SinA)}}}

\mathrm\blue{\rightarrow{\dfrac{(Cos^2A)}{(1+SinA.CosA)}+\dfrac{(1+SinA)^2}{(CosA.1+SinA)}}}

\mathrm\blue{\rightarrow{\dfrac{Cos^2A+(1+SinA)^2}{(CosA.1+SinA)}}}

\mathrm\blue{\rightarrow{\dfrac{Cos^2A+1+Sin^2A+2SinA)}{(CosA.1+SinA)}}}

\mathrm\blue{\rightarrow{\dfrac{Cos^2A+Sin^2A+2SinA+1}{(CosA.1+SinA)}}}

\mathrm\blue{\rightarrow{\dfrac{1+1+2SinA}{(CosA.1+SinA)}}}

\mathrm\blue{\rightarrow{\dfrac{2+2SinA}{(CosA.1+SinA)}}}

\mathrm\blue{\rightarrow{\dfrac{2(1+SinA)}{(CosA)(1+SinA)}}}

\mathrm\blue{\rightarrow{\dfrac{2{\red{\cancel{\blue{(1+SinA)}}}}}{(CosA){\red{\cancel{\blue{(1+SinA)}}}}}}}

\mathrm\blue{\rightarrow{\dfrac{2}{CosA}}}

\mathrm\blue{\rightarrow{2SecA}}

\sf{\boxed{\boxed{\pink{\rightarrow{2SecA{\color{black}{\checkmark}}}}}}}

Hence 2SecA is the required answer.

HOPE IT HELPS.

Answered by Anonymous
44

Given :

 \sf {\dfrac{(CosA)}{(1+SinA)}+\dfrac{(1+SinA)}{(CosA)}}

Need to Do :

  • Simplification ?

Solution :

 :  \implies  \sf{\dfrac{(CosA)}{(1+SinA)}+\dfrac{(1+SinA)}{(CosA)}}\\ \\

 :  \implies  \sf{\dfrac{(CosA.CosA)}{(1+SinA.CosA)}+\dfrac{(1+SinA.1+SinA)}{(CosA.1+SinA)}}\\ \\

 :  \implies  \sf{ \dfrac{(Cos^2A)}{(1+SinA.CosA)}+\dfrac{(1+SinA)^2}{(CosA.1+SinA)}</p><p> }\\ \\

 :  \implies  \sf{\dfrac{Cos^2A+(1+SinA)^2}{(CosA.1+SinA)}}\\ \\

 :  \implies  \sf{\dfrac{Cos^2A+1+Sin^2A+2SinA)}{(CosA.1+SinA)}}\\ \\

 :  \implies  \sf {\dfrac{Cos^2A+Sin^2A+2SinA+1}{(CosA.1+SinA)}} \\ \\

 :  \implies  \sf{\dfrac{1+1+2SinA}{(CosA.1+SinA)}}\\ \\

 :  \implies  \sf {\dfrac{2+2SinA}{(CosA.1+SinA)}}\\ \\

 :  \implies  \sf{\dfrac{2(1+SinA)}{(CosA)(1+SinA)}}\\ \\

 :  \implies  \sf{\dfrac{2{\cancel{(1+SinA)}}}{(CosA){\cancel{(1+SinA)}}}} \\ \\

 :  \implies  \sf{\dfrac{2}{CosA}}\\ \\

:\implies{\boxed{\sf{\pink{2\;secA}}}}\;\bigstar\\ \\

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀

Similar questions