Math, asked by pranayaxis5227, 17 days ago

Cos A/ 1+sin A+ 1+sinA/ cosA= 2sec A

Answers

Answered by anindyaadhikari13
4

Solution:

We have to prove that:

 \rm \longrightarrow \dfrac{ \cos(x) }{1 +  \sin(x) } +\dfrac{1 +  \sin(x) }{ \cos(x) }  = 2 \sec(x)

Taking Left Hand Side, we get:

 \rm = \dfrac{ \cos(x) }{1 +  \sin(x) } +\dfrac{1 +  \sin(x) }{ \cos(x) }

 \rm = \dfrac{ \cos^{2} (x) +  { \{ 1 +  \sin(x) \}}^{2} }{ \{1 +  \sin(x) \} \{ \cos(x)  \} }

 \rm = \dfrac{ \cos^{2} (x) +1 + 2 \sin(x)  +  \sin^{2}(x)}{ \{1 +  \sin(x) \} \{ \cos(x)  \} }

 \rm = \dfrac{ \cos^{2} (x)  +  \sin^{2} (x) +1 + 2 \sin(x)}{ \{1 +  \sin(x) \} \{ \cos(x)  \} }

We know that:

 \rm  \longrightarrow \cos^{2} (x)  +  \sin^{2} (x) =1

So, LHS becomes:

 \rm = \dfrac{1+1 + 2 \sin(x)}{ \{1 +  \sin(x) \} \{ \cos(x)  \} }

 \rm = \dfrac{2+ 2 \sin(x)}{ \{1 +  \sin(x) \} \{ \cos(x)  \} }

 \rm = \dfrac{2 \{1+  \sin(x) \}}{ \{1 +  \sin(x) \} \{ \cos(x)  \} }

 \rm = \dfrac{2}{\cos(x)}

 \rm = 2 \sec(x)

Therefore:

 \rm \longrightarrow \dfrac{ \cos(x) }{1 +  \sin(x) } +\dfrac{1 +  \sin(x) }{ \cos(x) }  = 2 \sec(x)

Hence Proved..!!

Additional Information:

1. Relationship between sides and T-Ratios.

  • sin θ = Height/Hypotenuse
  • cos θ = Base/Hypotenuse
  • tan θ = Height/Base
  • cot θ = Base/Height
  • sec θ = Hypotenuse/Base
  • cosec θ = Hypotenuse/Height

2. Square formulae.

  • sin²θ + cos²θ = 1
  • cosec²θ - cot²θ = 1
  • sec²θ - tan²θ = 1

3. Reciprocal Relationship.

  • sin θ = 1/cosec θ
  • cos θ = 1/sec θ
  • tan θ = 1/cot θ
  • cosec θ = 1/sin θ
  • sec θ = 1/cos θ
  • tan θ = 1/cot θ

4. Cofunction identities.

  • sin(90° - θ) = cos θ
  • cos(90° - θ) = sin θ
  • cosec(90° - θ) = sec θ
  • sec(90° - θ) = cosec θ
  • tan(90° - θ) = cot θ
  • cot(90° - θ) = tan θ

5. Even odd identities.

  • sin -θ = -sin θ
  • cos -θ = cos θ
  • tan -θ = -tan θ
Similar questions