Math, asked by asirsolomen, 1 year ago

cos a / 1+ sin a = sec a - tan a​

Answers

Answered by ritu748074
35

LHS cosa / 1+sina

cosa/1+sina×1-sina/1-sina

cosa×1-sina /1-sin^2a

cosa ×1-sina /cos^2a

1-sina/cosa

1/cosa -sina/cosa

seca -tana = RHS

Answered by harendrachoubay
36

\dfrac{\cos A}{1+\sin A}=\sec A-\tan A, proved.

Step-by-step explanation:

To prove, \dfrac{\cos A}{1+\sin A}=\sec A-\tan A

L.H.S.=\dfrac{\cos A}{1+\sin A}

Rationalising numerator and denominator, we get

=\dfrac{\cos A}{1+\sin A}\times \dfrac{1-\sin A}{1-\sin A}

=\dfrac{\cos A(1-\sin A)}{1-\sin^2 A}

Using the formula,

a^{2}-b^{2}=(a+b)(a-b)

[tex]=\dfrac{\cos A(1-\sin A)}{\cos^2 A}

Using the trigonometric formula,

\cos^2 A=1-\sin^2 A

=\dfrac{1-\sin A}{\cos A}

=\dfrac{1}{\cos A}-\dfrac{\sin A}{\cos A}

=\sec A-\tan A

=R.H.S. proved.

Similar questions