Cos a / 1- tan a - sin 2 a / cos a - sin a = sin a + cos a
Answers
Answered by
17
Answer:
Step-by-step explanation:
L.H.S
[cosA/1 - tanA] - [sin²A/cosA - sinA]
//Remember TanA = SinA/CosA
=> [cosA/ 1 - (sinA/cosA)] - [sin²A/cosA - sinA]
=>. [cosA * cosA / cosA - sinA] - [sin²A/cosA - sinA]
=> cos²A - sin²A / cosA - sinA
=> (cosA - sinA)(cosA + sinA) / cosA - sinA
=> cosA + sinA
=> R.H.S.
Hence proved
Answered by
2
Answer:
hey mate ur answer.
Step-by-step explanation:
cos A / (1 - tan A) + sin A /(1 - cot A) = sin A + cos A
LHS = cos A / (1 - tan A) + sin A /(1 - cot A)
= cos2 A / (cos A - sin A) + sin2 A / (sin A - cos A)
= cos2 A / (cos A - sin A) - sin2 A / (cos A - sin A)
= (cos2 A - sin2 A) / (cos A - sin A)
= (cos A + sin A) (cos A - sin A) / (cos A - sin A)
= (cos A + sin A).
LHS = RHS
hope it help u
pls mark as brainliest
Similar questions