Math, asked by HemavarshiniP4913, 1 year ago

Cos a / 1- tan a - sin 2 a / cos a - sin a = sin a + cos a

Answers

Answered by spiderman2019
17

Answer:

Step-by-step explanation:

L.H.S

[cosA/1 - tanA] - [sin²A/cosA - sinA]

//Remember TanA = SinA/CosA

=> [cosA/ 1 - (sinA/cosA)] - [sin²A/cosA - sinA]

=>. [cosA * cosA / cosA - sinA] - [sin²A/cosA - sinA]

=> cos²A - sin²A / cosA - sinA

=> (cosA - sinA)(cosA + sinA) / cosA - sinA

=> cosA + sinA

=> R.H.S.

Hence proved

Answered by psupriya789
2

Answer:

hey mate ur answer.

Step-by-step explanation:

cos A / (1 - tan A) + sin A /(1 - cot A) = sin A + cos A        

LHS = cos A / (1 - tan A) + sin A /(1 - cot A)

     = cos2 A / (cos A - sin A) + sin2 A / (sin A - cos A)

     = cos2 A / (cos A - sin A) - sin2 A / (cos A - sin A)

      = (cos2 A - sin2 A) / (cos A - sin A)

      = (cos A + sin A) (cos A - sin A) / (cos A - sin A)

      = (cos A + sin A).

LHS = RHS

hope it help u

pls mark as brainliest

Similar questions