Math, asked by Bunny6688, 8 months ago

(cos a÷ 1-tan a) + (sin a ÷ 1- cot a) = cos a + sin a​

Answers

Answered by Itzpurplecandy
5

Answer:

hope this helps you.....

Step-by-step explanation:

give thanks= take thanks

follow me

Attachments:
Answered by singhpinki195
1

Question :

Prove that (cos a÷ 1-tan a) + (sin a ÷ 1- cot a) = cos a + sin a.

Solution:

We want to prove that

 \frac{ \cos(a) }{1 -  \tan(a) }  +  \frac{ \sin(a) }{1 -  \cot(a) }  =  \sin(a)  +  \cos(a)

LHS

 \frac{ \cos(a) }{1 - tan(a)}  +  \frac{ \sin(a) }{1 -  \cot(a) }  \\   = \frac{ \cos(a) }{1 -  \frac{sin(a)}{ \cos(a) } }  +  \frac{sin(a)}{1 -  \frac{ \cos(a) }{ \sin(a) } }  \\  =  \frac{ \cos(a) }{ \frac{ \cos(a)  -  \sin(a) }{ \cos(a) } }  +  \frac{sina}{ \frac{ \ \sin(a) -  \cos(a)   }{ \sin(a) } }  \\  =  \frac{ { \cos(a) }^{2} }{  \cos(a) -  \sin(a) }  +  \frac{ { \sin(a) }^{2} }{ \sin(a) -  \cos(a)  }  \\  =  \frac{ { \cos(a) }^{2} -  { \sin(a) }^{2}  }{ \cos(a)  -  \sin(a) }  \\  =  \frac{( \cos(a)  +  \sin(a)) \:  ( \cos(a)  -  \sin(a)) }{ \cos(a) -  \sin(a)  } \\  =  \cos(a)   +  \sin(a)

Hence, proved.

Hope you like my answer.❤

(⌒o⌒)^_^^o^^ω^≧ω≦

Similar questions