cos
A÷
1-tan A
+
sin A÷
1-cot A
= sin A +cos A
Answers
Answered by
2
I presume the problem is
cos A/(1- tan A) + sin A/(1- cot A) = sin A + cos A
Note the parantheses and the RHS.
LHS = cos A/{(cos A -sin A)/cos A}
+ sin A/{(sinA-cos A)/sin A}
= cos^2 A/(cos A - sin A) - sin^2 A/(cos A - sin A)
= (cos^2 A - sin^2 A)/ (cos A - sin A)
= cos A + sin A = RHS ( modified)
luk3004:
Please mark as brainliest
Answered by
1
Answer:
LHS = COSA / (1-TAN A) + SIN A / ( 1- COT )
COS A / (1-SINA / COSA ) + SINA / ( 1- COSA / SINA )
COS^2A/ ( COS A - SINA ) + SIN^2A / ( SINA- COS A)
COS^2A / COS A - SINA - SIN^2 A / COS A - SINA
COS^2 A - SIN^2 A / ( COS A- SINA )
( COSA - SINA) ( COSA + SINA) / ( COSA - SINA)
( COSA + SINA ) = RHS
HENCE; LHS = RHS
Similar questions