Math, asked by damrtgmailcom8179, 10 months ago

cos⁡A/(1 - tan⁡A ) + sin⁡A/(1 -〖 cot〗⁡〖 A〗 ) = sin A + cos A

Answers

Answered by Anonymous
17

SOLUTION:-

Given:

cosA/(1-tanA)+sinA/(1-cotA)=sinA+cosA

To prove:

sinA + cosA

Proof:

Take L.H.S

 =  >  \frac{cosA}{cosA}  -  \frac{sinA}{cosA}  +   \frac{sinA}{sinA}  -  \frac{cosA}{sinA}  \\  \\  =  >  \frac{ {cos}^{2} A}{cosA - sinA}  -  \frac{ {sin}^{2} A}{cosA - sinA}  \\  \\  =  >  \frac{ {cos}^{2}A -  {sin}^{2}A  }{cosA- sinA}  \\  \\  =  >  \frac{(cosA  + sinA)(cosA - sinA)}{cosA - sinA} \\  \\  =  > cosA + sinA \:  \:  \:  \:  \:  \:  \:  \:  \: [R.H.S.]

Proved.

Answered by Anonymous
6

*。Important point

Here we have applied :-

→tan A = sinA/cosA

→cot A = cosA/sinA

→cos²A - sin²A = a² - b² i.e (a+b)(a-b)

And hence proved

hope it helps

__________________________❤

Attachments:
Similar questions