Math, asked by subham5032, 1 year ago

cos A /1 - tan A/ sin2 A / sin A - Cos A = sin A + cos A

Attachments:

Answers

Answered by harshverma91
11
 prove:- [ (CosA) / (1-TanA) ] + [ (SinA) / (1-CotA) ] = SinA + CosA . Solving LHS:- =[ (CosA) / (1-TanA) ] + [ (SinA) / (1-CotA) ] . =[ (CosA) / (1-SinA/CosA) ] + [ (SinA) / (1-CosA/SinA) ] . =[ (CosA) / {(CosA-SinA)/CosA} ] + [ (SinA) / {(SinA-CosA)/SinA} ] . =[ (Cos2A) / (CosA-SinA) ] + [ (Sin2A) / (SinA-CosA) ] . = [ (Cos2A) / -(SinA-CosA)] + [ (Sin2A) / (SinA-CosA) ] . = [ -(Cos2A) / (SinA-CosA)] + [ (Sin2A) / (SinA-CosA) ] . = [(Sin2A - Cos2A)/ (SinA-CosA) ] . = [ (SinA + CosA)(SinA - CosA) /(SinA-CosA) ] . =[ (SinA + CosA)(SinA - CosA) /(SinA-CosA) ] . =(SinA + CosA) = R.H.S , Hence proved.
Answered by shaikhtaseen10
1

Step-by-step explanation:

LHS = \frac{cos A}{1 - tan A} + \frac{sin^2 A}{sin A - cos A}

\frac{cos A}{1 - \frac{sin A}{cos A} } + \frac{sin^2 A}{sin A - cos A}

\frac{cos A}{\frac{cos A - sin A}{cos A} } + \frac{sin^2 A}{sin A - cos A}

\frac{cos^2 A}{cos A-sinA} + \frac{sin^2A}{sinA-cos A}

\frac{cos^2 A}{cos A-sinA} - \frac{sin^2A}{cosA-sin A}

\frac{cos^2A-sin^2A}{cosA-sinA\\}

\frac{(cosA+sinA)(cosA-sinA)}{(cosA-sinA)}

Therefore, cos A + sin A = RHS (PROVED)

Similar questions