Math, asked by 7339333415n, 6 months ago

Cos A
/1-tanA
+
SinA
/1-CotA
=
COSA + sinA

Answers

Answered by TheValkyrie
6

Answer:

Step-by-step explanation:

\Large{\underline{\underline{\bf{Given:}}}}

\sf{\dfrac{cos\:A}{1-tan\:A} +\dfrac{sin\:A}{1-cot\:A} =cos\:A+sin\:A}

\Large{\underline{\underline{\bf{To\:Prove:}}}}

LHS = RHS

\Large{\underline{\underline{\bf{Proof:}}}}

➜ The LHS is given by

    \sf{\dfrac{cos\:A}{1-tan\:A} +\dfrac{sin\:A}{1-cot\:A}}

➜ Simplifying by using identities,

    \sf{\dfrac{cos\:A}{1-\dfrac{sin\:A}{cos\:A} } +\dfrac{sin\:A}{1-\dfrac{cos\:A}{sin\:A} }}

➜ Cross multiplying,

    \sf{\dfrac{cos\:A}{\dfrac{cos\:A-sin\:A}{cos\:A} } +\dfrac{sin\:A}{\dfrac{sin\:A-cos\:A}{sin\:A} }}

    \sf{\dfrac{cos^{2} A}{cos\:A-sin\:A}+\dfrac{sin^{2} A}{sin\:A-cos\:A}  }

➜ Taking the negative outside,

     \sf{\dfrac{cos^{2} A}{cos\:A-sin\:A}-\dfrac{sin^{2} A}{cos\:A-sin\:A}  }

        \sf{\dfrac{cos^{2}\:A-sin^{2}\:A  }{cos\:A-sin\:A}}

      \sf{\dfrac{(cos\:A+sin\:A)(cos\:A-sin\:A)}{cos\:A-sin\:A}}

➜ Cancelling cos A - sin A on both numerator and denominator

     \sf{\dfrac{(cos\:A+sin\:A)\cancel{(cos\:A-sin\:A)}}{\cancel{cos\:A-sin\:A}}}

       \sf{cos\:A+sin\:A}

       = RHS

➜ Hence proved.

\Large{\underline{\underline{\bf{Identities\:used:}}}}

➜ tan A = sin A/ cos A

➜ cot A = cos A / sin A

➜ (a + b) × (a - b) = a² - b²

       

Similar questions