English, asked by shifaalam, 1 month ago

cos A +2cos B+cos C=2. Prove that the sides are in A P

Answers

Answered by IIMissTwinkleStarII
0

solution:-

Given that A,B,C are the angles of a triangle.

Therefore, A+B+C=180

Given that cosA+2cosB+cosC=2

⟹cosA+cosC=2(1−cosB)

⟹2cos(2A+C)cos(2A−C)=2(2sin22B)

⟹sin(2B)cos(2A−C)=2sin22B

⟹cos(2A−C)=2sin2B

Multiplying both sides by 2cos2B

we get 2cos2Bcos(

Therefore, a,b,c are in A.P.

hii shifa

remember me

Answered by dhirapal100
1

Answer:

Take care you too.

Are you using i.n.st.a or s n a p c h a t?

Similar questions