Math, asked by taroc4nirevandhika, 1 year ago

(cos A)/a + (Cos B )/b+ (cos C)/c = (a 2 +b 2 + c 2 )/2abc

Answers

Answered by rdahin
22
cosA/a=b2+c2-a2/2abc
cosB=c2+a2-c2/2abc
cosC=a2+b2-c3/2abc

adding above three we get
(cos A)/a + (Cos B )/b+ (cos C)/c = (a 2 +b 2 + c 2 )/2abc
Answered by mysticd
28

Answer:

\frac{cosA}{a}+\frac{cosB}{b}+\frac{cosC}{c} =\frac{a^{2}+b^{2}+c^{2}}{2abc}

Step-by-step explanation:

__________________________

By Cosine Rule :

i) CosA =\frac{b^{2}+c^{2}-a^{2}}{2bc}

ii)CosB =\frac{a^{2}+c^{2}-b^{2}}{2ac}

iii)CosC =\frac{b^{2}+a^{2}-c^{2}}{2ac}

___________________________

Now ,

LHS = \frac{cosA}{a}+\frac{cosB}{b}+\frac{cosC}{c}

= \frac{\frac{b^{2}+c^{2}-a^{2}}{2bc}}{a}+\frac{\frac{a^{2}+c^{2}-b^{2}}{2ac}}{b}+\frac{\frac{b^{2}+a^{2}-c^{2}}{2ac}}{c}

= \frac{b^{2}+c^{2}-a^{2}}{2abc}+\frac{a^{2}+c^{2}-b^{2}}{2abc}+\frac{b^{2}+a^{2}-c^{2}}{2abc}

=\frac{b^{2}+c^{2}-a^{2}+a^{2}+c^{2}-b^{2}+a^{2}+b^{2}-a^{2}}{2abc}

= \frac{a^{2}+b^{2}+c^{2}}{2abc}

=$RHS$

Therefore,

\frac{cosA}{a}+\frac{cosB}{b}+\frac{cosC}{c} =\frac{a^{2}+b^{2}+c^{2}}{2abc}

••••

Similar questions