Math, asked by kotaswararaokundeti, 9 months ago

cos(A+B) =0;cosA=√3/2 then find value of A and B​

Answers

Answered by my069234
1

 \cos(90)  = 0 \\  \cos(60)  =  \sqrt{3 \div 2 }  \\ now \: accordingly \: you \: can \: solve \: this

Attachments:
Answered by Unni007
3

Given,

  • \sf cos(A+B)=0
  • \sf cos\:A= \dfrac{\sqrt 3}{2}

If,

\sf cos\:A= \dfrac{\sqrt 3}{2}

\implies\sf A=cos^{-1}(\dfrac{\sqrt 3}{2})

\implies\sf A=30^o

We know,

\sf cos(A+B)=0 \:\:when\:\: A+B=90\:\:because\:\:cos\:90^o=0

So,

⇒ A + B = 90

⇒ 30 + B = 90

⇒ B = 90 - 30

⇒ B = 60°

Therefore,

\huge\boxed{\bf A=30^o\:\:\:and\:\:\:\:B=60^o}

Similar questions