Cos(A-B)=3/5 and tanA.tanB=2 Then......
Answers
Given that cos (A-B) = 3/5
So cosAcosB + sinAsinB = 3/5.....eqn.1
Given tanA*tanB = 2
So (sinA/cosA)*(sinB/cosB) = 2
→ sinAsinB = 2 cosAcosB............eqn.2
Similarly , cosAcosB= ½(sinAsinB )........eqn.3
Putting eqn.2 in eqn.1 we get,
cosAcosB + 2cosAcosB =3/5
3cosAcosB =3/5
cosAcosB =1/5......eqn.4
Putting eqn.3 in eqn. 1 , we get,
½(sinAsinB) + sinAsinB = 3/5
3/2(sinAsinB) = 3/5
sinAsinB = 2/5.....eqn.5
We know that cos(A+B) = cosAcosB - sinAsinB.....eqn.6
Putting eqn.4 and eqn.5 in eqn.6 we get,
cos(A-B) = 1/5- 2/5
= -1/5. Proved.
We are given that,
tan A ×tan B = 2
(sin A × sin B)/(cos A ×cos B)=2
Applying componendo and dividendo rule
sin A sin B + cos A cos B /sin A sin B - cos A cos B =3/1
cos (A-B)/cos(A-B)= 3
cos(A-B) /3= cos (A+B)
cos (A+B) = (-3/5)×3=-1/5
cos (A+B) =-1/5