Math, asked by Kaha, 1 year ago

cos(-a+b+c) +cos (a-b+c) + cos(a+b-c)+cos (a+b+c)=4cosa cosb cosc

Attachments:

Answers

Answered by Lipimishra2
32
Use cos C + cos D = 2 cos ((C+D)/2) cos ((C-D)/2)
Please comment if you don't understand what's written.
Attachments:
Answered by aquialaska
23

Answer:

To show: cos( -a + b + c ) + cos ( a - b + c ) + cos ( a + b - c ) + cos ( a + b + c ) = 4 . cos a . cos b . cos c

We use the following formula,

cos\,x+cos\,y=2cos\,(\frac{x+y}{2})\:cos\,(\frac{x-y}{2})

Consider,

LHS

=cos\,(-a+b+c)+cos \,(a-b+c)+cos\,(a+b-c)+cos\,(a+b+c)

=2\:cos\,(\frac{-a+b+c+a-b+c}{2})\:cos\,(\frac{-a+b+c-(a-b+c)}{2})+2\:cos\,(\frac{a+b-c+a+b+c}{2})\:cos\,(\frac{a+b-c-(a+b+c)}{2})

=2\:cos\,c\:cos\,(b-a)+2\:cos\,(a+b)\:cos\,c   ( cos(-c) = cos c )

=2\:cos\,c(cos\,(b-a)+cos\,(a+b))

=2\:cos\,c(2\:cos\,(\frac{b-a+a+b}{2})\:cos\,(\frac{b-a-(a+b)}{2})

=2\:cos\,c(2\:cos\,b\:cos\,a)    ( cos(-a) = cos a )

=4\:cos\,c\:cos\,b\:cos\,a

=4\:cos\,a\:cos\,b\:cos\,c

=RHS

Hence Proved.

Similar questions