cos(A+B+C)+cos (-A+B+C)+cos (A-B+C) + cos (A+B-C) sin (A+B+C)+sin (- A+B+C) + sin (A − B+C) -sin (A+B-C) = cot C
Answers
Answered by
0
Answer:
SOLUTION
A + B + C =π
A + B = π - C
tan (A + B = tan (π - C)
tanA+tanB1−tanA.tanB = -tanC
tan A + tan B + tan C = tan A tan B tan C - - - - - - (1)
For three values tan A, tan B & tan C
AM ≥ GM
tanA+tanB+tanC3 ≥ (tanA.tanB.tanC)13
[tanA + tanB + tanC = tanA tanB tanC]
(tanA.tanB.tanC)23≥3
(1cotA.cotB.cotC)23≥3
{cotA.cotB.cotC = k}
(1k)23≥3
1k≥(3)32
k ≤1(3)32
k ≤13.312
k ≤13√3
Answered by
2
Refer to the attachment mate
Attachments:
Similar questions