cos(A-B) - cos(A+B) =
Answers
Answered by
0
Answer: cos (A+B)+cos (A-B)
= cos A cos B - sin A sin B + cos A cos B + sin A sin B
= 2 cos A cos B.
Answered by
3
★ Solution :-
We need to find ,
cos(A - B) - cos(A + B)
As we know that ,
- cos(A - B) = cosAcosB + sinAsinB
- cos(A + B) = cosAcosB - sinAsinB
Substituting the values we have,
→ cosAcosB + sinAsinB - [ cosAcosB - sinAsinB ]
→ cosAcosB + sinAsinB - cosAcosB + sinAsinB
→ sinAsinB + sinAsinB
→ cos(A - B) - cos(A + B) = 2sinAsinB
Hence , cos(A - B) - cos(A + B) = 2sinAsinB
________________________
★ More information :-
Trigonometric identities
- sin²A + cos²A = 1
- sec²A - tan²A = 1
- cosec²A - cot²A = 1
Trigonometric formulae
- tanA = sinA/cosA
- cotA = cosA/sinA
- sin2A = 2sinAcosA
- cos2A = 1 - 2cos²A or sin²A - cos²A
- tan2A = 2tanA/1 - tan²A
- sin(A + B) = sinAcosB + cosAsinB
- sin(A - B ) = sinAcosB - cosAsinB
- cos(A + B) = cosAcosB - sinAsinB
- cos(A - B) = cosAcosB + sinAsinB
Similar questions
History,
3 months ago
English,
3 months ago
Math,
7 months ago
Political Science,
7 months ago
English,
11 months ago