Math, asked by sandeep9492, 7 months ago

cos(A-B) - cos(A+B) =​

Answers

Answered by Dishamajumder
0

Answer: cos (A+B)+cos (A-B)

= cos A cos B - sin A sin B + cos A cos B + sin A sin B

= 2 cos A cos B.

Answered by ItzArchimedes
3

Solution :-

We need to find ,

cos(A - B) - cos(A + B)

As we know that ,

  • cos(A - B) = cosAcosB + sinAsinB
  • cos(A + B) = cosAcosB - sinAsinB

Substituting the values we have,

→ cosAcosB + sinAsinB - [ cosAcosB - sinAsinB ]

→ cosAcosB + sinAsinB - cosAcosB + sinAsinB

→ sinAsinB + sinAsinB

→ cos(A - B) - cos(A + B) = 2sinAsinB

Hence , cos(A - B) - cos(A + B) = 2sinAsinB

________________________

More information :-

Trigonometric identities

  • sin²A + cos²A = 1
  • sec²A - tan²A = 1
  • cosec²A - cot²A = 1

Trigonometric formulae

  • tanA = sinA/cosA
  • cotA = cosA/sinA
  • sin2A = 2sinAcosA
  • cos2A = 1 - 2cos²A or sin²A - cos²A
  • tan2A = 2tanA/1 - tan²A
  • sin(A + B) = sinAcosB + cosAsinB
  • sin(A - B ) = sinAcosB - cosAsinB
  • cos(A + B) = cosAcosB - sinAsinB
  • cos(A - B) = cosAcosB + sinAsinB
Similar questions