Math, asked by nvgangarajuyadav, 8 months ago

cos(A+B) cos ( A-B)=​

Answers

Answered by ItzRudaina
1

cos(a+b)*cos(a-b) = cos^2a - sin^2b tan(x/2) = (1-cosx)/(sinx)

Answered by dna63
0

Step-by-step explanation:

We have,,

\sf{\cos(A+B).\cos(A-B)}

\sf{=[\cos(A).\cos(B)-\sin(A).\sin(B)].[\cos(A).\cos(B)+\sin(A).\sin(B)]}

\sf{=\cos^{2}(A).\cos^{2}(B)-\sin^{2}(A).\sin^{2}(B)}

\sf{=[1-\sin^{2}(A)].[1-sin^{2}(B)]-\sin^{2}(A).\sin^{2}(B)}

\sf{=[1-\sin^{2}(B)-\sin^{2}(A)+\sin^{2}(A).\sin^{2}(B)]-\sin^{2}(A).\sin^{2}(B)}

\sf{=1-\sin^{2}(B)-\sin^{2}(A)+\sin^{2}(A).\sin^{2}(B)-\sin^{2}(A).\sin^{2}(B)}

\sf{={\boxed{\sf{\cos^{2}(B)-\sin^{2}(A)}}}}

Hope it helps ❣️❣️❣️

Similar questions