Math, asked by basvajaijesh, 4 months ago

cos(a+b).cos(a-b) =?​

Answers

Answered by logitharun
0

Answer:

cos(a+b)*cos(a-b) = cos^2a - sin^2b tan(x/2) = (1-cosx)/(sinx)

please click the brainliest answer .

Answered by Bit145
1

Answer:

\cos(A+B)\cdot\cos(A-B)=\cos^2A-\sin^2B=\cos^2B-\sin^2A

Step-by-step explanation:

\cos(A+B)\cdot\cos(A-B)=(\cos A\cdot\cos B-\sin A \cdot \sin B)(\cos A\cdot\cos B+\sin A \cdot \sin B)

=\cos^2 A\cdot \cos^2B - \sin^2 A \cdot \sin^2 B

=\cos^2 A \cdot (1-\sin^2 A)-(1-\cos^2 A)\cdot \sin^2 B\\

=\cos^2 A - \cos^2 A \cdot \sin^2 B - \sin^2 B + \cos^2 A \cdot \sin^2 B

=\cos^2A-\sin^2B

Note that \cos(A-B)=\cos(B-A)

So, \cos(A+B)\cdot\cos(A-B)=\cos^2B-\sin^2A is also true

Similar questions