Cos ( a+b) + sin ( a-b) =2 sin (45+a) cos (45+b)
Answers
Answered by
1
Answer:
GIVEN:--
Cos(A+B)+sin(A-B)=2sin(45°+A)cos(45°+ B)
LHS:--
Cos(A + B) + sin(A - B)
cosAcosB - sinAsinB + sinAcosB - cosAsinB
RHS
2(sin45°cosA+cos45°sinA)X
(cos45cos-sin45sinB)
2(√2/2cosA + √2/2sinA)X
(√2/2cosB - √2/2sinB)
2( (1/2)cosAcosB - (1/2)cosAsinB
+
(1/2)sinAcosB - (1/2)sinAsinB)
cosAcosB - cosAsinB + sinAcosB - sinAsinB
LHS = RHS
HOPE THIS HELPS
Step-by-step explanation:
Answered by
0
Answer:
Step-by-step explanation:
cos(a+b)=cosacosb-sinasinb
sin(a-b)=sinacosb-cosasinb
sin45+a=sin45cosa+cos45sina=(cosa+sina)/sqrt(2)
cos45+b=cos45cosb-sin45sinb=(cosb-sinb)/sqrt(2)
RHS: 2sin(45+a)cos(45+b)=2(cosa+sina)(cosb-sinb)/2=(cosa+sina)(cosb-sinb)
LHS:
cosacosb-sinasinb+sinacosb-cosasinb
=cosb(sina+cosa)-sinb(sina+cosa)
=(sina+cosa)(cosb-sinb)
LHS=RHS
Similar questions
Math,
4 months ago
English,
9 months ago
Social Sciences,
1 year ago
History,
1 year ago
Political Science,
1 year ago