Math, asked by parasram18, 8 months ago

Cos (A + B)+ Sin (A - B) = 2 Sin(45 + A) Cos (45 + B )​

Answers

Answered by nagorihaidar95
1

Step-by-step explanation:

taking L.H.S.

= cosAcosB - sinAsinB + sinAcosB - cosAsinB

taking R.H.S.

= 2(sin45°cosA + cos45°sinA)(cos45cosB - sin45sinB)

= 2(√2/2cosA + √2/2sinA)(√2/2cosB - √2/2sinB)

= 2( (1/2)cosAcosB - (1/2)cosAsinB + (1/2)sinAcosB - (1/2)sinAsinB)

= cosAcosB - cosAsinB + sinAcosB - sinAsinB

hence L.H.S. = R.H.S.

Similar questions