English, asked by mukkti1938, 11 months ago

cos (π-A)×cos(π÷2+A)×cos(-A)÷tan(π+A)×tan(3π÷2+A)×sin(2π-A)=cosA​

Answers

Answered by Anonymous
11

 \huge{ \boxed{ \mathfrak{question}}} \\

 \frac{ \cos(\pi - \:a)  \times  \cos( \frac{\pi}{2} \:  -  \: a ) \:  \times  \cos( - a)  }{ \tan(\pi +  \: a)  \times  \:  \tan( \frac{3\pi}{2} \:  +  \: a ) \:  \times  \:  \sin(2\pi \:  - a)  }  \\

Some important identities :-

✧ In 1st quadrant all trigonometric functions are positive.

✧ In 2nd quadrant Sine and cosec are positive.

✧ In third quadrant tan and cot are positive.

✧ In Fourth quadrant cos and sec are positive .

→ When we crosses 180° or 360° The trigonometric function will remain same .

→ When we crosses 90° and 270° the function will change .

______________________

☆ Cos ( π - A) = - Cos A

☆ Cos ( 90 - A) = Sin A

☆ Cos ( - A) = Cos A

☆ tan ( π + A) = tan A

☆ tan ( 3π/2 + A) = - Cot A

☆ Sin ( 2π - A ) = - Sin A

Putting these values in the Question .

 \implies \:  \frac{( -  \cos(a)) \:  \times  \:  \sin(a)  \:  \times  \:  \cos(a)  }{ \tan(a) \:  \times  \:(  -  \cot(a) ) \:  \times  \:(  -  \sin(a) ) }  \\

☆ Tan A × Cot A = 1

 \implies \:  \frac{ -  \cos(a). \cos(a) . \sin(a)  }{ - 1. - ( \sin a)}  \\

 \implies \:   - { \cos(a) }^{2}  \\

Answered by sruthi04
13

Answer:

Hopes it helps uu...

Mark as brainlist answer...

Attachments:
Similar questions