Math, asked by PaalviNinawe, 3 months ago

cos A +cos B - cos C =
4 cos A/2 *cos B/2* sin C/2 -1​

Answers

Answered by Anonymous
0

Answer:A+B+C=25  (Given)

Also,  

A

+

B

+

C

=

π

 (Sum of angles of triangle)

L.H.S

cos

(

s

A

)

+

cos

(

s

B

)

+

cos

(

s

C

)

cos

(

90

°

A

)

+

cos

(

90

°

B

)

+

cos

(

90

°

C

)

sin

A

+

sin

B

+

sin

C

2

sin

(

A

+

B

2

)

cos

(

A

B

2

)

+

sin

C

                                 

[

sin

A

+

sin

B

=

2

sin

(

A

+

B

2

)

cos

(

A

B

2

)

]

2

cos

C

2

cos

(

A

B

2

)

+

2

sin

C

2

cos

C

2

2

cos

C

2

[

cos

(

A

B

2

)

+

cos

(

A

+

B

2

)

]

                                 

[

sin

C

2

=

cos

(

A

+

B

2

)

]

2

cos

C

2

×

2

cos

(

A

2

)

cos

(

B

2

)

4

cos

(

A

2

)

cos

(

B

2

)

cos

(

C

2

)

L.H.S=R.H.S

Hence, Proved.

Step-by-step explanation:

Similar questions