cos a cos b equal to n cos a cos b equal to n sin a by sin b equal to m then m square minus n square into sin square b
Answers
Answered by
1
HELLO DEAR,
I think your question is :-
If n= cosA/cosB and m= sinA/sinBThen show that, (m² - n² ) sin²B = (1 - n²)
NOW,
{(sin²A/sin²B) - (cos²A/cos²B)}sin²B
=> {(sin²Acos²B) - (cos²Asin²B)}/(sin²Bcos²B) × sin²B
=> {(sin²Acos²B) - (cos²Asin²B)}/(cos²B)
=> {(1 - cos²A)cos²B - cos²A(1 - cos²B)}/(cos²B)
=> {cos²B - cos²Acos²B - cos²A + cos²Acos²B}/cos²B
=> (cos²B - cos²A)/cos²B
=> 1 - cos²A/cos²B
=> 1 - (cosA/cosB)²
=> 1 - n²
HENCE, L.H.S = R.H.S
I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions