. (cos A+ cos B) + (Sin A +sinB) = 4cos²(A-B)/2
Answers
Answered by
1
Answer:
LHS = (cosA+cosB)²+(sinA+sinB)²
= (cos²A+2cosAcosB+cos²B)+
(sin²A+2sinAsinB+sin²B)
/* By algebraic identity:
(x+y)² = x²+2xy+y² */
Rearranging the terms, we get
= (cos²A+sin²A)+(cos²B+sin²B)+2(cosAcosB+sinAsinB)
= 1+1+2cos(A-B)
________________________
we know that,
i) cos²x + sin²x = 1
ii) cosxcosy+sinxsiny = sin(x-y)
________________________
= 2+2cos(A-B)
= 2[1+cos(A-B)]
\boxed {1+cos\theta = 2cos^{2}\frac{\theta}{2}}
1+cosθ=2cos
2
2
θ
= 2\times 2cos^{2}\frac{(A-B)}{2}2×2cos
2
2
(A−B)
=4cos^{2}\frac{(A-B)}{2}4cos
2
2
(A−B)
=RHSRHS
Therefore,
(cosA+cosB)²+(sinA+sinB)²
=4cos^{2}\frac{(A-B)}{2}4cos
2
2
(A−B)
this is your answer please give me a like
Similar questions