Math, asked by tanksaleanish, 9 months ago

cos A. cot A / 1-sin A = 1 + cosec A​

Answers

Answered by MrUnKnOwn33
3

 \huge \red{solution}

  \cos(a)  \frac{ \cot(a) }{1 -  \sin(a) }  = 1 +  \csc(a)

LHS

 \frac{ \cos(a)  \frac{ \cos(a) }{ \sin(a) } }{1 -  \sin(a) }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \therefore \cot(a)  =  \frac{ \cos(a) }{ \sin( a) }

 \frac{  { \cos }^{2}a  }{ \sin( a) 1 -  \sin(a) }

 \frac{1 -  { \sin  }^{2} a}{ \sin(a) (1 -  \sin(a)) }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \therefore \:  { \cos }^{2} a = 1 -  { \sin }^{2} a

 \frac{(1 -  \sin(a)(1 +  \sin(a))  }{ \sin(a)(1 -  \sin( a))  }

 \frac{1 +  \sin(a) }{ \sin(a) }

 \frac{1}{ \sin(a) }  +  \frac{ \sin(a) }{ \sin(a) }

 \csc \: a \:  + 1 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \therefore \frac{1}{ \sin \: a  } =  \csc \: a

 \red{rhs =  \cos \: a + 1}

 \green{hopu \: u \: like \: my \: answer}

 \green{thank \: u \: and \: have \: a \: nyc \: day}

Similar questions