Math, asked by seeedaya, 1 year ago

cos A-sin A+1/cos A+sin A-1

Answers

Answered by dstthkur
1

Answer:

Step-by-step explanation:

=CosA - SinA + 1/CosA + SinA - 1

=(CosA + SinA) - SinA + 1/CosA - 1

=(√1) - SinA + 1/CosA - 1

=1 - 1 - SinA + 1/CosA

=-SinA + SinA

=0

Answered by Anonymous
2

CosA-sinA+1/cosA+sinA-1

=(cosA-sinA+1)(cosA+sinA+1)/(cosA+sinA-1)(cosA+sinA+1)

=(cos²A-cosAsinA+cosA+cosAsinA-sin²A+sinA+cosA-sinA+1)/{(cosA+sinA)²-(1)²}

=(cos²A-sin²A+2cosA+1)/(cos²A+2cosAsinA+sin²A-1)

={cos²A+2cosA+(1-sin²A)}/(1+2cosAsinA-1) [∵, sin²A+cos²A=1]

=(cos²A+2cosA+cos²A)/2cosAsinA

=(2cos²A+2cosA)/2cosAsinA

=2cosA(cosA+1)/2cosAsinA

=(cosA+1)/sinA

=cosA/sinA+1/sinA

=cotA+cosecA

=cosecA+cotA (Proved)

hope it works out for you ☺️

Similar questions