cos A- sin A+1/ cos A+sinA-1 =cosec A+cot A
Answers
(cos A - sin A + 1) / (cos A + sin A - 1)
divide numerator and denominator by sin A
(cos A/sin A - sin A/sin A + 1/sin A) / (cos A/sin A + sin A/sin A - 1/sin A)
(cot A - 1 + cosec A) / (cot A + 1 - cosec A)
(cosec A + cot A - 1) / (cot A + 1 - cosec A)
Now replace the '1' in numerator by :-
cosec^2 A = 1 + cot^2 A
1 = cosec^2 A - cot^2 A
[cosec A + cot A - (cosec^2 A - cot^2 A)] / (cot A + 1 - cosec A)
Now,
cosec^2 A - cot^2 A = (cosec A + cot A)(cosec A - cot A)
[(cosec A + cot A) - (cosec A - cot A)(cosec A + cot A)] / (cot A +1 - cosecA)
now take , (cosec A + cot A) common from numerator
(cosec A + cot A)[1 -(cosec A - cot A)] / (cot A +1 - cosecA)
(cosec A + cot A)[1 - cosec A + cot A)] / (cot A +1 - cosecA)
after cancel out
cosec A + cot A
PRETTY LONG........
HOPE IT HELPS