cos A - sin A +1
= cosec A + cot A, using the identity cosec A=1+cor A.
cos A + sin A -11
Answers
Answered by
4
Answer:
(cos A- sin A + 1)/(cos A + sin A - 1). Divide both numerator and the denominator by sinA.the sum becomes
(cot A - 1 + cosec A)/(cot A + 1 -cosec A)
=(cosec A + cot A - 1)/(cotA - cosec A +1)
={cosecA+cotA-(cosec^2 A- cot^2 A)}/cotA-cosecA+1
={(cosecA+cotA)-(cosecA+cotA)(cosecA-cotA)}/cotA-cosecA+1
=[(cosecA+cotA){1-(cosecA-cotA)}]/cotA-cosecA+1
={(cosecA+cotA)(1-cosecA+cotA)}/cotA-cosecA+1
=(cosecA+cotA)(cotA-cosecA+1)/cotA-cosecA+1
=(cosecA+cotA)
=cosecA+cotA.
Similar questions