cos alpha=3/5 , cos beta = 5/13 then cos'2(alpha-beta/2)
Answers
Answer:
Step-by-step explanation:CosAlpha=3/5 And CosBeta=5/13
Then
Cos2(Alpha-Beta)/2
2(3/5-5/13)/2
3/5-5/13
LCM Of 5 And 13 Is 65
39-25/65
14/65
Given That Cos Square (Alpha-Beta)/2 So
(14/65)square×1/2
196/4225×1/2
98/4225
Please Mark As Brainliest If Answer Is Correct
Answer is 64/65
Here is the step by step explanation
Given cos alpha =3/5 then sin alpha=4/5
And
Cos beta =5/13 then sin beta =12/13
Then cos²(alpha-beta/2)=(cos 2(alpha-beta/2)+1)/2
Since cos2theta=2cos²theta-1
( Cos2theta+1)/2=cos²theta
According to the problem,let theta =(alpha-beta)/2
Then,
Cos²(alpha-beta)/2=(Cos(alpha-beta)+1)/2
Since Cos(alpha-beta)=cosalpha.cosbeta+sinalpha sin beta
=(3/5).(5/13)+(4/5)(12/13)
=63/65
At last ,
Cos²(alpha-beta)/2=(63/65 +1)/2
=128/65×2
=64/65