Cos(alpha-beta)=3/5 sin(alpha+beta)=5/13 then tan 2 alpha
Answers
Answered by
0
Answer:
tan 2α =21/4
Step-by-step explanation:
cos(α-β)=3/5
sin(α+β)=5/13
Let α-β=x and α+β=y
cos x=3/5 so sec x=5/3
sec²x-tan²x=1
(5/3)²-tan²x=1
tan²x=(5/3)²-1=25/9-1=16/9
tanx=4/3
===============
similarly
cot²y=cosec²y-1
=169/25-1
=(169-25)/25
tan²y=144/25
coty =12/5
tany=5/12
===============
tan(x+y)=( tanx+tany)/ ( 1-tanxtany)
=(4/3+5/12) /(1-4/3*5/12)
=(16+5/5) /(1-5/9)
=21/5 / 4/5
=21/5 *5/4
tan(x+y)=21/4
tan (α-β+α+β)=21/4
tan 2α =21/4
Similar questions