Math, asked by Aaryan10messi, 10 months ago

Cos alpha - beta by 2 = 2cos alpha + beta by 2, then find tan alpha by 2 into tan beta by 2

Answers

Answered by Anonymous
0

Substitute the values of cosα and cosβ in terms of the tangents of their half angles.

cosα=  

1+tan  

2

 

2

α

​  

 

1−tan  

2

 

2

α

​  

 

​  

 and cosβ=  

1+tan  

2

 

2

β

​  

 

1−tan  

2

 

2

β

​  

 

​  

 

Let tan  

2

 

2

α

​  

=a and tan  

2

 

2

β

​  

=b

Substituting the above values in the expression,

2(  

1+b

1−b

​  

−  

1+a

1−a

​  

)+(  

1+a

1−a

​  

)(  

1+b

1−b

​  

)=1

⇒2(  

1+a+b+ab

1−b+a−ab−1+a−b+ab

​  

)+  

1+a+b+ab

1−a−b+ab

​  

=1

⇒4(a−b)+1−a−b+ab=1+a+b+ab

⇒4a−4b=2b+2a

⇒2a=6b⇒a=3b

⇒tan  

2

 

2

α

​  

=3tan  

2

 

2

β

​  

 

⇒tan  

2

 

2

α

​  

−3tan  

2

 

2

β

​  

=0

⇒(tan  

2

α

​  

+  

3

​  

tan  

2

β

​  

)(tan  

2

α

​  

−  

3

​  

tan  

2

β

​  

)=0

∴tan  

2

α

​  

+  

3

​  

tan  

2

β

​  

=0 or tan  

2

β

​  

−  

3

​  

tan  

2

β

​  

=0

Similar questions