Math, asked by prathemesh5528, 23 days ago

(cos alpha + cos beta)^2 +(sin alpha +sin beta)^2 =4cos^2(alpha -beta/2)

Answers

Answered by mathdude500
6

 \green{\large\underline{\sf{Solution-}}}

Consider,

\rm :\longmapsto\: {(cos\alpha  + cos\beta )}^{2} +  {(sin\alpha   + sin\beta  )}^{2}

We know,

\red{ \boxed{ \sf{ \:cosx + cosy = 2cos\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg]}}}

and

\red{ \boxed{ \sf{ \:sinx + siny = 2sin\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg]}}}

Let assume that x = alpha and y = beta

Using this result, we get

\rm ={\bigg(2cos\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg]\bigg) }^{2}  +  {\bigg(2sin\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg]\bigg) }^{2}

\rm = 4 {cos}^{2}\bigg[\dfrac{x + y}{2} \bigg] {cos}^{2}\bigg[\dfrac{x - y}{2} \bigg] + 4 {sin}^{2}\bigg[\dfrac{x + y}{2} \bigg] {cos}^{2}\bigg[\dfrac{x - y}{2} \bigg]

\rm = 4 {cos}^{2}\bigg[\dfrac{x  -  y}{2} \bigg] \bigg({cos}^{2}\bigg[\dfrac{x  + y}{2} \bigg] +  {sin}^{2}\bigg[\dfrac{x + y}{2} \bigg]\bigg)

We know,

\red{ \boxed{ \sf{ \: {sin}^{2}x +  {cos}^{2}x = 1}}}

So, using this, we get

\rm \:  =  \:  {4cos}^{2}\bigg[\dfrac{x - y}{2} \bigg] \times 1

\rm \:  =  \:  {4cos}^{2}\bigg[\dfrac{x - y}{2} \bigg]

Hence, Proved

Additional Information :-

\red{ \boxed{ \sf{ \:2sinxcosy = sin(x + y) + sin(x - y)}}}

\red{ \boxed{ \sf{ \:2cosxcosy = cos(x + y) + cos(x - y)}}}

\red{ \boxed{ \sf{ \:2sinxsiny = cos(x - y) - cos(x + y)}}}

\red{ \boxed{ \sf{ \:cosx  -  cosy = 2sin\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{y - x}{2} \bigg]}}}

Similar questions