Math, asked by palaksandhu9t5, 8 months ago

( cos Alpha - cos beta ) whole square + (sin alpha - sin beta ) whole square = 4 sin Alpha - beta upon 2​

Answers

Answered by sumbalshahz1710
2

Answer:

Step-by-step explanation:

LHS

(Cosalpha - cos beta) ^2+(sin(alpha-sin beta) ^2

=Cos^2alpha+cos^2beta-2cos(alpha)cos(beta)+sin^2(alpha)+sin^2(beta)-2sin(alpha)sin(beta)

As cos^2alpha+sin^2alpha=1

Sin^2alpha+sin^2beta=1

=1+1-2(cos alpha cos beta - sinalpha sin eta)

=2-2cos(alpha+beta)

=2[1-cos(alpha+beta)]

=2(2sin^2(alpha+beta)/2)

=4sin^2(alpha +beta) /2

Similar questions