( cos Alpha - cos beta ) whole square + (sin alpha - sin beta ) whole square = 4 sin Alpha - beta upon 2
Answers
Answered by
2
Answer:
Step-by-step explanation:
LHS
(Cosalpha - cos beta) ^2+(sin(alpha-sin beta) ^2
=Cos^2alpha+cos^2beta-2cos(alpha)cos(beta)+sin^2(alpha)+sin^2(beta)-2sin(alpha)sin(beta)
As cos^2alpha+sin^2alpha=1
Sin^2alpha+sin^2beta=1
=1+1-2(cos alpha cos beta - sinalpha sin eta)
=2-2cos(alpha+beta)
=2[1-cos(alpha+beta)]
=2(2sin^2(alpha+beta)/2)
=4sin^2(alpha +beta) /2
Similar questions