Math, asked by suraj5912, 9 months ago

cos B /1- tan B + sin B / 1- cot B = sin B + cos B prove that​

Answers

Answered by Anonymous
5

Solution

 \frac{cos \: b}{1 -  \: tan \: b} \:  +  \:  \frac{sin \: b}{1 -  \: cot \: b}  =  \: sin \: b \:  +  \: cos \: b

Let's Take LHS

 \frac{cos \: b}{1 -  \: tan \: b} \:  +  \:  \frac{sin \: b}{1 -  \: cot \: b}

 \frac{cos \: b}{1 -  \frac{sin \: b}{cos \: b} }  \:  + \:   \frac{sin \: b}{1 -  \frac{cos \: b}{sin \: b} }

 \frac{cos \: b}{ \frac{cos \: b \:  -  \: sin \: b}{cos \: b} }  +   \frac{sin \: b}{ \frac{sin \: b \:  - cos \: b}{sin \: b} }

 \frac{ {cos}^{2}{b} }{cos \: b \:  -  \: sin \: b}  +  \frac{ {sin}^{2}{b} }{sin \: b \:  - cos \: b}

 \frac{ {cos}^{2}{b} }{cos \: b \:  -  \: sin \: b}  + ( -  \frac{ {sin}^{2}{b} }{cos \: b \:   -   sin \:  \: b} )

 \frac{ {cos}^{2}{b} }{cos \: b \:  -  \: sin \: b}   -   \frac{ {sin}^{2}{b} }{cos \: b \:  -  \: sin \: b}

 \frac{ {cos}^{2}b -  {sin}^{2}b  }{cos \: b \:  -  \: sin \: b}

Now (cos²b - sin²b ) is like (-b²),

So the formula of (-b²) is

(a+b)(a-b)

 \frac{(cos \: b \:  +  \: sin \: b)(cos \: b \:  -  \: sin \: b)}{(cos \: b - sin \: b \: )}

Now (cos b - sin b ) will be cancelled.

(cos \: b \:  </strong><strong>+</strong><strong> </strong><strong> \: sin \: b)

Or we can write it like ,

</strong><strong>\</strong><strong>b</strong><strong>o</strong><strong>x</strong><strong>e</strong><strong>d</strong><strong>{</strong><strong>(</strong><strong>Sin</strong><strong> \: b \:  +  \: </strong><strong>Cos</strong><strong> \: b)</strong><strong>}</strong><strong> RHS

Hence Proved !!

__________________________

───── ❝ TheEnforceR ❞ ─────

Mark as Brainliest !! ✨✨

Similar questions