cos
( cas dans (or -- -on (23+3)
+ x cos (21 + x) cot
x + cot (211 + x) = 1
Attachments:
Answers
Answered by
0
Answer:
taking L.H.S
cotx cot2x - cot2x cot3x - cot3x cotx
= cotx cot2x - cot3x ( cot2x + cotx)
= cotx cot2x - cot (2x+x)(cot2x+cotx)
( using cot(A+B)= cotB cotB-1)
= citx cot2x - ( cot2x cotx-1)/ cotx +cot2x)( cot2x+cotx)
= cotx cot2x - (cot2x cot x-1)
= cotx cot2x - cot2x cot2x cotx+1
= 1
= R.H.S
hence L.H.S = R.H.S
hence proved
Similar questions